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flE.CU-3£ol 
OBJECT: The purposs of this report is to present an investigation 

•f one of the classic papers on one-dimensional shock waves 

in order to promote understanding of this phenomenon, and to 

present al3o an investigation of one of the modern theories 

of propagation of spherical shock waves. 

SUM&RY: R. Becker's article »Stosswelle and Detonation" (1921) is 

examined in detail with respect to the theory of shock 

waves. The Hugoniot relations are developed and are 

shown to be independent of friction and heat transfer 

effects in the shock front. 

The theory of propagation of spherical shocks, as deve- 

loped by Kirkwood and Brinkley (1947) is discussed. 

Comparison of theoretical and experimentally measured 

quantities is shown to demonstrate the validity of the 

theory. 

A glossary of hydrodynamical equations and a detailed 

annotated bibliography is also given. 
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Section I 

ONE DIMENSIONAL SHOCK WAVES 

INTRODUCTION 

It seems that Poisson1 was the first to find a simple wave solution of 

the differential equation of one-dimensional flow of a gas at constant 

temperature, and J. Challis2 observed that such a solution equation can 

not always be solved uniquely for the velocity u. 

To remedy this situation, Stokes^ proposed to assume a discontinuity in 

the velocity. He used the laws of conservation of mass and momentum to 

deduce two discontinuity conditions for an isothermal gas. Stokes was 

the fir3t to suggest the possibility that discontinuous pressure waves 

might be propagated with velocities greater than that of sound. He 

argued further that discontinuities would never occur physically, be- 

cause any tendency to form such a discontinuity would be counteracted 

by viscous forces. 

S. Earnshaw^ first developed the laws of propagation of waves of finite 

amplitude (as distinguished from sound waves, which are assumed to be 

infinitessimal) and investigated mathematically the building up of a 

discontinuity. He realized from investigation of the flow of gases for 

which pre33ure i3 a function of density only, that since the local velo- 

city of propagation increases across a compression wave, such a wave 

would always be "gaining" on its front until a discontinuity would form. 

1 S. D. Poisson - Memoire sur la theorie du son. Journal de l'ecole 

polytechnique, 14*me cahier, 7, 319-392 (1808) 

2 J. Challis - On the velocity of sound. Phil-Mag. 32, 494-499 (1848) 

3 G. G. Stokes - On a difficulty in the theory of sound. Phil-Mag. 

33, 349-356 (1848) 

*• S. Earnshaw - On the Mathematical Theory of Sound. Phil-Trans. 

A 150, 133-148 (1850) 
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B. Ri«mann5, without knowledge of Eafnshaw's work, developed his own 

theory of the simpl« wave, and obtained the general solution to the 

flow problem by introducing what is now known as "Riemann invariants." 

He rediscovered the theory of shocks and elaborated on it, but_incor-_ 

rectly assumed the transition across a shock to be isentropic. 

W. J. M. Rankine6 developed conditions for conservation of mass, momen- 

tum, and energy across the discontinuity. He showed that no steady 

adiabatic process in which the only forces are pressure-forces can 

represent a discontinuous change over a small finite region from one 

constant state to another. He proposed that across this region a non- 

adiabatic process accurs, rather than an adiabatic one,with heat being 

exchanged among the particles of the fluid, but none being received from 

outside it. 

Although Rankine's work is compatible with the principle of conservation 

of energy, Rayleigh7 and Hugoniot8 were the first to point out clearly 

that inentropic transition in a shock would violate this principle. 

Hugoniot showed in fact, that for non-viscous flow without heat transfer 

(•utside the discontinuity) entropy must be conserved for continuous flow, 

and must change across a discontinuity. Lord Rayleigh showed that dissi- 

pation is necessarily present in a shock wave, and that entropy across 

such a wave must hence increase. 

5 B. Riemann - Über die Fortpflanzung Ebener Luftwellen von endlicher 

Schwingungsweite - Gesaranelte Werke, 1876, p 144 or Abhandlungen der 

Gesellshaft der Wissenschaften zu Gottingen. Math-Phys Klasse 8, 43, 
(1860) 

6 W. J. M. Rankine - One the thermodynamic theory of waves of finite longi- 
tudinal disturbance. Phil-Trans. A 160, 277-288 (1870) 

7 J. Rayleigh - Aerial plane waves of finite amplitude Proc. Roy. Soc. A. 

84, 247-284 (1910) 
8 H. Hugoniot - Sur la propagation du mouveraent dans les corps et 3peciale- 

msat dans les gaz parfaits. Journal de l'ecole polytechnique, 58, 1-125 

(1889) Page 3 
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The earliest experimental work was done by Maclr and hi3 coworkers, who 

demonstrated by various methods that shock waves spread with velocities 

greater than that of sound. 

The following discussion is a detailed theoretical investigation of ons- 

dimen3ional shock waves and derives almost all of the results obtained by 

the earlier workers in the field by application of the principles of con- 

servation of mass, momentum, and energy, and by ingenious mathematical 

procedures. 

The investigation of one-dimensional shock waves is well justified in a 

paper which is supposed to be primarily concerned with spherical shocks. 

Not only is an understanding of one-dimensional shocks necessary for coa- 

prehension of spherical shocks, but in the treatment of one-dimensional 

shocks we are also able to reach some conclusions that apply to shock 

wave3 in general. 

The following treatment follows that of Becker^-0 fairly closely, but ad- 

ditional mathematical steps and interpretations have been added, and 

comments by Lewis and von Elbe"^ have been included. 

9 E. Mach, Wiener Berichte, 72(1875), 75(1877), 77(1878) 

10 R. Becker - Stosswelle und Detonation. Zeits. f. Phys. 8, 321(1921) 

11 "Combustion, Flames, and explosion of Gases" B. Lewis and G. Von Elbe, 

Academic Press. Inc., New York, 1951 
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QUALITATIVE DISCUSSION OF SHOCK WAVE FORMATION 

Beforo proceeding with a detailed mathematical analysis of shock wave 

formation, we might do well to become more acquainted with that phenomenon 

on a more qualitative basis. 

Let us consider a long tube into which a piston is inserted at the left; 

the tube being filled uniformly with the gas of the surrounding atmosphere. 

If we import a small velocity, dw, to the piston, this movement causes a 

weak compression wave to travel to the right with the velocity of eound. 

Then, at any given instant, the ga3 to tha right of the wavefront is un- 

changed and undisturbed, while the gas between the wave-front and the 

piiton is compressed an amount dp and has the velocity dw. If we now 

increase the velocity of the piston by another increment dw, a second 

weak compression wave will proceed to the right. By frequent repetition 

of thi» procedure, the pi3ton is brought to its final velocity, w. 

The compression waves that are started later advance with greater velocity 

since the velocity of sound is greater at higher densities (or at higher 

temperatures, if we assume the compression to be adiabatic), and since 

the ga« itself also has higher flow velocity. Hence, as newer waves "catch- 

up" with the older ones, the wave-front becomes increasingly "steeper" - 

when older and newer wave3 are completely merged, a shock-wave with an 

extremely large pressure gradient is formed. 

Pago 5 

set CG^ 



A MATHEMATICAL INVESTIGATION OF SHOCK WAVES 

The Formation of Shock Waves 

We consider a tube as described in the previous section, but with unit 

cross-sectional area. Let £ denote the thickness of a very thin di3k 

of the gas in the tube, let x be the space coordinate measured along 

the tube, and let t denote time. Then we see that any property G 

of a material particle along the tube is a function of x and t only. 

Hence we may write 

UJ        »   —=5-  -»-  U. ^r—- 

4x 
where u = öX~ denotes velocity along the tube axis. Further, we may 

show (see Appendix I) that 

Since we have defined K  as very small, we may consider all properties 

constant within this thickness. If p denotes density, p pressure, 

E internal energy per unit mass, we note that £ contains the mass 

p £ , the momentum up K  , and the .energy  p£(E+ ^r ) • Letting 

P, represent the mean pressure acting on the surfaces of our disk, and 

letting X be a heat transfer coefficient, and JJL  one of friction, them 

from the principles of conservation of mass, mementum and energy, one 

may write the following: 

(2.)     jr(p<n.-0 

where fl, = p,-A 57-and where the* relation between ju.   and the ordinary 
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yiscosity coefficient -y is 17 - ^-^_   as dictated by the symmetric 

12 property of the pressure tensor. 

The above three relations are easily modified into 

(3a) *X-  = _ p 2* 

The manipulations involved are shown in appendix II. If we introduce 

entropy S through the relation 

T as - dE - pair * ae - p ^* 
then equation (3c) may be expressed as 

which expresses the variation of s with time, under the influence of 

yli and X , i.e. friction and heat conduction. 

Now, let us neglect heat transfer and friction, for the sake of discussion. 

This amounts to setting \-ju.~0 ,  and hence, from equation (4), gft = ° 

This, in turn implies that 5 * constant, or that the flow occurs adia- 

batically and reversibly. 

Applying (1) to p , and using (3a) we find 

Similarly, applying (l) to a , and making use of (3b) after setting 

12 Weber and Gaus, Report, d. Phys. I, 1, p. 439 
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If we postulate a gas for which p = &p , (say an ideal gas for which 

p = a*pK where a.* is a constant and k the ratio of heat capacities,} 

the above becomes 

(5b)   ^   * * ^L 
±_ As- 2£- ~ o 
p Ö.P     3x 

Equations (5*) and (5b) my be solved as follows, to yield solutions of 

the form <**) ,p(x,t) . We consider the x-t plane, in which the direction 

of any line element (ax,at) may be given by .«f , where «f is defined 

by 4x«f At. Along this line element, any function öM changes by 

the amount ac ( 
2£. * 
ax » 2>* ) 

If G i» chosen as G-u^Cf), "here { is any function of p only, with 

derivative ^ , we find 

dtu*fcP)i'. (§**♦ VIS-** i£ -V^-)**- 

By adding and subtracting    u|j  * V* &     Wlthln ^ P*™**188'8' the 

above may be transformed into 

Itofrrlns to (5.) «id (5b), « find that■ th. right side of thl. expression 

Tanishes if 

d-H'« f ?p     ~*    :^i ? 

that is.either if 

1   P i ap 

Wo now define for ease of notation, c 

the foregoing results may be written more concisely as 

f - * H^5p 

ap 
With this definition 

V- *^ atll u * c 

But, sine* these are solutions which make  a(«*0 = o , we find that 
P 

(6^j  0.+ ( ■*=■ ap= Const, along curves  ^| = u.-*-c 

and 

(6b) 
I 

-I    ^ äp ^    Cörtst.    O1.<M<J    curves 

ft 
at •a  u-c 
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p.  here denotes a constant of integration, which is evaluated by appli- 

cation of initial condition* and found to be the density of the undis- 

turbed medium. 

If we introduce Riemann'S5 notation, to improve on Becker's cumbersome 

system, and define 

* * \     T^ ^        aS indicated by R' H# Cole.13i 

the above equations may be written more simply 

u.i 0- s Con3t. along curves  —^ =. u. * c. 

Now we shall apply these results to the piston in our infinite tube. We 

assume the piston at rest at x=0 and t*o , let it be accelerated uni- 

formly with an acceleration a for a time T and finally let it continue 

with constant velocity a, . If we denote quantities pertaining to the 

piston by the subscript S , the motion of the piston will be defined by 

(7) 
xs= £*-*, ,y      <? •«; ts ■«; T u4 =■ ats {o 

This motion is shown as curve C in the x-t plane (Fig. 1). 

In the entire tube, u=0 , p - p„ at tme "t=0 . Since a-* then has the 

same value everywhere on the x-axis (at t-0 ), and since the curves 

(6b), originating from the positive x-axis, fill the entire space be- 

tween C and the x-axis, then in that entire domain, «■- «" - const. 

Similarly, along the curves (6a), u.-*- <r = const. Hence, along the 

curves (6a) both a and (T must be constant, or both a and p must be 

13 R. H. Cole - Underwater Explosions. Princeton University Press, 

Princeton, New Jersey, 1948 
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constant. ( p ~  const, implies O-  = const.) But, along the x-axis, 

(i.e. att=0 ), u.=0 , p « p„ . This means that along the x-axis 

<r =0 also, and hence U.-Q- =0 , so that the relation between 

a and p that is valid everywhere is 

(8).  * = cr = f^Sf <*? 

I/iimediately at the piston (i.e. along the curve C), *AS is given, and 

hence also ps by the above equation. Then from every point ( X^, \  ) 

on C, the line 

(9)   x-xs ^ct-t,>( us«, t>np\.) 

on which p and u. have the constant values ps and <J* may be drawn. 

For piston motion given by (7), the portion of the  \-t  plane between 

the curve C and the x-axis is divided into three regions by the two 

lines (9) corresponding to ^-0  and "t4 = T . In the lowest region 

u. ■ O , in the middle (shaded) region «A varies from O ton, , and 

in the upper region u. = u.(  (constant). 

In a gas, where   f> -°-*P*,    ;^p = a3 K p" whence 

Also 

c • \£$ - ^ yiTp 

\>? *g-?*\, 
If we now denote by c„ the velocity of sound in the gas at the initial 

conditions,    c0= 0-R"p0   *■      , and we obtain from (8): 

, and from this 
(10) 

-z. 
^=  -^r.  C* -ce) 

d0  
=   (p.)  *    = (p.J =  v 

2C. 

The slopes of curves  (6a) and (6b) then become 

(11) ... -    -      ..    .      *<--! 

tc-c    a     u. 

u.   -*■ ac C.     -      !^i0L 

K-l Co     =     -    C.C..    -     —g-M-   ) 

Page 10 

301     Ot^L 



It is important to notice that the solutions we have obtained cease to 

be valid as soon as two of the lines (9) intersect, since at that point 

of intersection, u. would be required to have two values at the same 

time. Hence the analytic counterpart of one wave-front over-taking the 

other is the intersection of two curves (9). The place A , and time 

T of this over-taking are found by simultaneous solution of (9) with 

-a.\   » ^ at - <x-t,,(.K+0 - C„ 

which is obtained by differentiating (9) with respect to t^, after 

making U3e of (11) and (7) for replacing xs ,   4, , c» , by functions of 

"ts . Then, we find 

For a    = ZOO %c  , c0 =   330 "Y<.ec , K = '-.4     ,   T = Q. 5 s«c    , we 

find   u-, =   100 "7s<c .    The first discontinuity will occur at    X- 453 w, 

T      = 1.3S i«c (for-t*- o ). 

Also, by (10),        p p 
H  .«   liS-, 11 .,   1.34- 

Fig. 2 corresponds to the above example. It represents the distribution 

of velocity along the axis of the tube at the times indicated. The 

"stiffening" of the wave-front is easily recognized by the increasing 

steepness of these curves. Although Becker gave a curve of this type, 

Fig. 2 is plotted from my  computations. I plotted various lines of 

the type (9), making use of (7) and (11), in Fig. 3. From this figure, 

Fig. 2 is obtained easily by a cross-plot. 

It is evident from the foregoing discussion, that the occurance of a 

compression shock depends on the condition that within an adiabatic 

wave-formation the- waves traveling in a denser medium tend to overtake 

those in a less dense medium. This means that the velocity given by 

(6a) ä*   ^ (4. -H r4^i      must increase with increasing density. 

If we apply (8), the above condition becomes 

Page 11 301  0£B 



a. V ( U Wr? -if) >° 
But, the above expression may be written also as 

or, if we replace p by Jp. , we obtain (as demonstrated in appendix 

IV) that this expression may be written as 

—,V" T- -=-P      Since ^L£-   <O , o^v.<i ir3 > O        4W«, 

1 d-v 
Condition for the formation of compression shocks becomes 

From the foregoing we draw the conclusion that in a given medium either 

only compression or only rarefaction shocks can occur, not both, depend- 

ing on whether /d*P \ is positive or negative. 

Necessity of Considering; Heat Conduction and Friction 

As mentioned before, the equations (5) are only applicable where heat 

transfer and viscosity may be neglected. Hence, the foregoing solutions 

obtained from these equations are subject to the same limitations. Since 

no real fluids, are entirely devoid of these effects, equations (5) must 

yield wrong answers when temperature gradients ( g^ ) or rate of change 

of volume ( |^ ="u"x^ ) exceed certain limits. This is evident from 

inspection of equations (5). These magnitudes, however, tend to exceed 

any finite value in a shock wave, according to the foregoing discussion. 

Hence, use of equations (5) is possible only until the discontinuity occurs, 

but is not valid at the shoe k wave. 

Intuitively, when the wave front reaches a certain steepness, a further 

increase in steepness will be prevented by friction and heat conduction; 

the flattening tendency will be just sufficient to counteract the tend- 

ency for steepening. The details of this interaction are too complicated 

for mathematical description, since various sedondary waves are formed in 

the process. We hence must be satisfied with investigation of the shock 

wave after it has become quasi-steady. 

Page 12 
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Stationary Compression Shocks 

After the shock wave has reached a quasi-steady state, we are able to 

investigate it using a coordinate system that moves with the shock. Our 

problem reduces to integration of equations (3) for the case where all 

derivatives with respect to time vanish. V/e hence replace dt_ oy u. =-.- 

and obtain the following equations from (3): 

One may integrate these equations, as I have shown in appendix V, to 

obtain the following results. 

(12a) .  ' u = tM-ir 

(12b)     M^nr + p - J  ~  « M 5x 

(12c)     EL + ->^ ^ M"- <r 

where U, J, F, are constants of integration, and energy E and tempera- 

ture T may be considered as functions of f    and "~ . 

We seek relations between the values u,, r, . x, , before the shock front 

and the values ut, p.., UL , behind it. This is easily accomplished when 

we realize that only within the wave front do ^ and d~ differ markedly 

from zero. Hence, for any place outside the wave-front 

^ = M 

(13)     M"~\r- -*- p  --  'F  MJS J 

E -v Jv--VM'u-i -  E ^ ^ -V p-v = E^ 

Comparing two such places, denoted by subscripts 1 and 2, 

(14a) 

(Hb) -^-   -v   P|     -     ^    +   Pfc 

(i4c)       e, + ^ + f, -,  «    e, + ^t   * FJ-irz. 
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These fundamental equations are hence independent of friction /i and 

heat transfer A. They are identical to relations obtained by requir- 

ing conservation of mass-, momentum,, and energy, across the shock wave. ^ 

Hence, the mathematical artifice of introducing a discontinuity is 

justified. (However, by this means we obtain no insight into the 

processes, within the wave front). 

Relations obtained for Compression Shocks 

In order to obtain a clearer view of the meaning of equations (14), we 

solve (14a) and (14b) for u^ , and u^ , then substitute the results into 

(14c). We obtain 

(15a)    u,* =  v,*  P- -P' 
IT, - -UV 

(15b)    u* *  ir*  ,^-P. 
V-, --Vs. 

(15c)    E^ - E, - -fe (p, * Pj( v, -nr4) 

Equation (l5c) is known as the Hugoniot equation. Note that this is 

different from Ft-E, - I pdv t  as would pertain to isentropic flow, but 
vx 

that for small enough differences of 6 and v the above approaches 

. <XE Z p4\rt  which is the isentropic relation. It may be shown1^ that 

for the same volume change (15c) will read to a larger tf=f,-f, than 

the corresponding isentropic relation. 

The velocity of propagation, U , of the shock wave into a medium at rest, 

and W , the velocity of flow behind the wave front are 

(16)  ( U = a« = ^.  \|£i_-J^. 

Hence, given the state of the undisturbed medium ( pM->\ ), and'the 

"shock pressure", p^, plus an appropriate equation of state, we are 

able to compute all other values. 

14 This is done by Lewis and Von Elbe, op. cit. 
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We illustrate this for an ideal gas, where 

(17a)  pir ■- -RT 

and 

(17b) E -E = c~ (T -T ) where c^ is the mean heat capacity 

between 1^ and T, . 

We let 

(18) 

^. -+ » 

TT  *i, -»■ f 

-"■- *;. 

TT-S.   *» 

and obtain (Appendix VI) 

TV     "n~ + ^. 
(19a)    -~   = TT 

(19b)   *• « £- 

(19c)   P* = P% . 

.3- 

(19d)  W*--p,-vt (t;,-i ) J^"' - 

For a perfect gasl5, c„= j^, hence ^ = ^ . For a diatomic perfect 

gas1^, < = \A   ,  and hence \- &     . If IT is large compared to 6, (19a) 

indicates that T increases proportionally to p . Hence, we must intro- 

duce ^ , as a function of T . 

Z7J,T 

Becker calculated the figures given in Table 1, using . cv  = A-ie> ^ 

4j ,0-
3
TJaL which he supposed to be good up to about 3000°C.  (This expres- 

sion'valid for-Or and CO,., was taken from Pier, Zeits. f. Elektrochem. 

15, 536 (1909) and 16, 897 (1910), and Siegel, Zeits. f. phys. Chem. 87, 

641 (l9U)i)  Although Lewis and Von Elbe state that this expression 

is somewhat in error, Becker's work still serves-to point out relative 

magnitudes. 

*5 E. F. Obert. Thermodynamics, Mc-Graw-Hill Book Company, Inc, 

New York, 1948. p. 187, equ. (7-12) 
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With the above T, we obtain t?% = S.az + o.^xio-' Tx    , and with 

this $ , (19a) becomes a quadratic in Tt. The other relations (19) 

then yield all other required values. T, = 0°C. 

TABLE I 

TT TV V, 

Ct<) 
W 

(~A,c> 
i 
P. 

2 1.23 1.63 336 452 175 1.63 330 

5 1.76 2.84 482 698 452 11.4 426  • 

10 2.56 3.88 705 978 725 34.9 515 

50 8.28 6.04 2260 2150 1795 296 794 

100 14.15 7.66 3860 3,020 2590 
1 

699 950 

500 44.8 11.15 12200 6570 5,980 5560 
■ 

1433 

1000 70.0 14.3 19100 9,210 8560 14300 1,710 

2000 106.2 18.8 29,000 12^00 i:>210 37,600 2p70 

3000 134.4 22.3 36700 15750 15050 66900 2180 ■ 

The total impulse x , which appears in the next-to-last column, is 

an important measure for evaluating the effect of a shock wave on an 

obstacle.  "»• is composed of the static pressure difference p*. - p, 
•2. 

and of the momentum of the ga3 behind the wave-front, p*. W . With 

the value of vV from (16), and by substituting irt= ^ , 

i * lp»-vO * pzW2> tfx-p. ) ^ f <*~^ i~   - (tr-O ^_ 

In order to illustrate the foregoing calculations for a liquid, we use 

Tammann's equation of state , which is valid up to very high pressures. 

16 G. Tanmann - Ann. Physik 37, 975 (1912) 
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It is 

10 *   -ir-to 
(20)   p .  Ä " K 

where c, b, and K, are constants. The general relation for internal 

energy, olEL - cvdT^(-r|^- - P) «*«- then may be integrated 

to yield 

(20a)   El =  c^ T -*■ w^v 

If we define 

(21)    p' = p -*- v< ,   v' = v- - to 

and apply (20 ) to the Hugoniot equation (15c), we obtain 

■ C^ W,. - Tj- = • -k ( P,' * pi ) t V,' - ^'j 

and (20) is transformed into 

The above equations are structurally identical to those for a gas, so 

that the solutions (19) can be carried over directly. Here, 

*T = ?-^ + ,      and  TT' ä  P^ * *•    , making 
< ■    c ■    p> ^ K 

Table II applies to ethyl ether, for which K= Z72 9«*»« , c=.t00> rK, 

b«.94 ^V, v, = l.3C-^\ c^ » .564 jv^, p, = I «ct^ , T, - o*c 

100       1.6 1.6 1260 

1,000     15.6 15.6 1445 

10,000 85 113 2680 

20,000 123 211 3000 

60,000 201 594 5010 
100,000 245 975 6430 
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Structure of th« Shock Wave 

Becker investigated the structure of the wave-front by carrying out 

the integration of equations (12) for gases in which >• and /J.   ful- 

fill certain requirements. The usefulness of his calculations, of 

course, depends on how well a gas under consideration meets these 

requirements. For air, Becker admitted an error of about 10$ in his 

calculations for y  , p ,T4 in the shock front, but he computed thick- 

nesses of shock fronts on the order of magnitude of molecular mean free 

paths. However, for such magnitudes, the physics of continua (hydrodynamis) 

can not apply, and Becker admitted hi3 theory was inadequate. 

Becker obtained the following shock front thicknesses X.  , for air with 

pj=l atm, Tj - 0°C 

p,. Catm )    2    5    10   100   1000   2000   3000 

ID1! Um.)  447  117   66   16.5  5.2   3.6   2.9 

(According to Kinetic theory of gases, the mean free path at 1 a'tm, 

0°C is about 90 X 10~" cm, and the mean distance between molecules is 

3.3 X 10*7 cm). 

But Becker's theory was vindicated by L. H. Thomas17 in 1944. He showed 

that all shock wave3 in air are a few mean free paths thick, by consider- 

ing th« increase in the coefficients of thermal conductivity and vis- 

cosity with increasing temperature and pressure, which Becker neglected, 

and by application of Kinetic theory. 

Experimental substantiation of theories of processes within a shock front 

is practically nil. The extremely transient nature of shock front passage 

' L. H. Thomas - Note on Becker's Theory of the Shock Front. J. Chem. 

Phys., 12, pp 449-57 (November 1944) 
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makes instrumentation a formidable problem, and besides makes knowledge 

of conditions within the shock front of little practical significance. 

G. R. Cowan and D. F. Hornig18 developed equations for computation of the 

density profile of a shock wave from measurements of reflectivity. They 

also performed some measurements in nitrogen, keeping a constant    P, - 

1.71, and varying p, . The following are their results: 

p% (a**)   5.78      4.63   2.86 

jL («TV,)  180       200    320 

The accuracy of their measurements is estimated at 25*; hence the above 

values are slightly larger than those calculated by the Becker - Thomas 

Theory. Thi3 discrepancy may be due to the assumption of hard-sphere 

molecules made by Thomas, which is not too good for a diatomic gas like 

nitrogen. But assumptions made by Cowan and Hornig may possibly lead to . 

a greater error in their work than was estimated. 

18 G. R. Cowan and D. F. Hornig, The Experimental Determination 

of the Thickness of a Shock front in a Gas. 

J. Chem. Phys. 18, 1008-18 (August 1950) 
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Section II 

TOB PROPAGATION OF SPHERICAL SHOCK WAVES 

INTRODUCTION 

Although Lord RayleigtJ solved the hydrodynamic equations for plane 

»hock« analytically (assuming adiabatic relations between pressure 

and density),, auch an approach can not be taken in the case of spherical 

shock waves.  The difficulty arises from the spherical divergence terms 

that appear in the partial differential equations that describe spherical 

notion. 

A solution of the problem may of course be obtained by numerical integration 

of the pertinent partial differential equations. Penney20, and later Penney 

and Dasgupta21 have carried out calculations of this kind for spherical TNT 

charges. They employed a method of integration based on the equations of 

Rieaann5, which greatly simplifies the numerical work and reduces the re- 

quired labor.. But, even with this simplification, this method is extremely 

todious and complex. Furthermore, the Riemann equations apply only where 

dissipation effects can be neglected. The desirability of developing more 

rapid and flexible methods is hence evident. 

J. G. Kirkwood and H. A. Bethe22 developed one such method, applicable to 

underwater explosions of spherical charges. However, they u3ed the approxi- 

mation of adiabatic flow, neglecting the increase in entropy at the shock 

front. This assumption is warranted for water, because the entropy in- 

crement produced by a shock wave in liquids is very small. However, for 

gasos tho entropy increase is not neglible. 

20 W. G. Penney, British Report RC - 142 (1941) 

21 W. G. Penney and H. K. Dasgupta, British Report RC -333 (1942) 

22 J. G. Kirkwood and H. A. Bethe. - Pressure waves produced by an under- 

water explosion, I, OSRD 588 (1942) 
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Another theory of underwater shock waves has been presented by Osborne 

23 
and Taylor . This theory, however, is based upon the acoustic approxi- 

mation, and is hence strictly valid only for small excess pressures at 

relatively large distances from the source. This approximation is also 

not valid for very large distances from the source, as indicated by 

G. B. VJhitham2^. 

The following theory, which we shall examine in detail, was developed 

by S. R. Brinkley, Jr., and J. G. Kirkwood2^. It is superior to those 

discussed above, and to others developed for shock waves in air, which 

have been based on ideal gas adiabatics with constant heat capacity . . 

Brinkley and Kirkwood account in their theory for the finite entropy 

increment occuring in the fluid due to passage of the shock wave. Hence, 

this theory is equally valid for the propagation of shock waves in liquids 

and in gases. 

The development which follows is essentially that of-Brinkley and Kirk- ' 

wood; however, I have specialized it for application to spherical shocks 

(since their discussion applies to plane and cylindrical.flow also)and 

I have inserted additional explanation and intermediate mathematical 

steps where these seemed applicable. 

23 
F. M. Osborne and A. H. Taylor. - Nonlinear propagation of underwater 

shock waves. Phys. Rev. 70, 322 - 8 (September 1, 15, 1946) 

G. B. Whitham. - The propagation of spherical blast. Proc. Roy. 3oc. 

A ,203, 571 - 81 (October 24, 1950) 

S. R. Brinkley, Jr., and J. G. Kirkwood. - Theory of the Propagation 

of Shock Waves. Phys. Rev. 71, 606 - 11 (May 1, 1947) 
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THE BRINKLEY AND KIRKWOOD THEORY 

Brinkley and Kirkwood use a hybrid form of the hydrodynamic equations, 

utilizing the Euler form of these equations, but introducing Lagrangian 

Coordinates2?. In order to derive the equations as they are used in this 

theory, we define the following symbols. 

Let r   be the Euler coordinate at time t of an element of fluid with 

Lagrange coordinate "R . Let p and p denote pressure and density, 

and let the subscript (0) refer to the undisturbed fluid. The Euler 

velocity of sound c , is given by ca = ( %£)     ,  and let P = p - p> . 
"v  's 

The equation of motion (conservation of momentum) in the Euler form, may 

■27 
be written in vector notation as 

(23) p   =-^ + Y p = 0 / where \# is the velocity vector. 

For spherical flow, all quantities are functions only of radius r and 

time "t , and the velocity is purely radial. For this type of flow, (J23) 

becomes 

«*>  f5 *■   (§?),= ° 
where u i3 the particle velocity, or, u. = (;cr)o 

But   u. = VA. (R,-fc)      f  and Euler's notation means R = const. 

Hence 

We not« that a spherical shell with radius R and thickness dR contains a 

mass of fluid given by  •4TTp0 'R
1"a'R_   , (R ia by definition the 

position in the undisturbed fluid of a volume element which at time t is 

at r-  ), and that the same mass of fluid is contained in a spherical shell 

26 G. I. Taylor The air wave surrounding an expanding sphere.Proc. Roy. 
Soc A, 186, 273 - 92 (September 24, 1946) - This assumption fails badly 
near the explosive source. 

27 
See the "Glossary of Hydrodynamic Equations" near the end of this paper» 
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of radius r and thickness dr , which contains a mass    4ir^r*'d^ 

Hence, at tiir.e   t   , 4Trf0 ^ JR     -     4-n-^r^dr f from 

which we find    /^.A p^2 

Then, considering       p .-= p ( R (-t) 

^ " (Ä|tl^UffjB(tj; l^)t Ä* 
Substituting the foregoing values into (24), we obtain 

or, as in the paper by Brinkleyand Kirkwood, 

(25.)  ^'(2lkV +   JL-(*Z\ 

since      a"P =    <ip 
fo   VDR4--   ° 

Euler's equation of continuity in vector notation appears as 

(26)       iß.   _    e  (v. v/) ■     0 

Again, constant    R    is- implied.    Considering    p - p (R, t) again, 

then 

±£-   =   iß.   ä£L - -L    d£.aif/kW i»£.\    * / ^  1  - - f ^1 

Further,  for spherical flow,  and considering u = u (r,t), 

by the definition of  7   ,  for curvilinear coordinates28; or 

V- v/ = (£*)   ^   ^±_     _ / 3M. \ / DR\    2. 

28 
See for instance, H. La3s, »Vector and Tensor Analysis" McGraw-Hill 

Book Co., Inc., New York, 1950. p 54, equ. (89) 
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Subatitution of the foregoing results into (26), and division by p 

yi.ld. Klrkwood and Brinkley-s form of the equation Qf  continuity: 

(25b) m. ZK. 

Summarizing, we have the new equation of motion 

(25«)  S /£u\     _L / DPX 

and the equation of continuity, 

(25b) -L ( 2E.)    +.   JZ£ ./ Zu.\ 
2u_ 
r 

Equations (25) are to be solved subject to the initial conditions speci- 

fied on a curve in the R, t-plane and to the Hugoniot conditions at the 

shock front (Appendix VII): 
T -   (9b u. U       " • 

(26)     P(U-u): - (00U 

* H her. denotes the specific enthalpy increment experienced by the 

the fluid in traversing the shock front, and U is the velocity of the 

3hock front. (The Hugoniot conditions are seen to apply to spherical 

ahock fronts also, since in their derivation no assumption as to the 

snap« of the fronts was made). 

At the shock-front itself, r - R, so that equations (25) for the shock 

front simplify to 

(25c) (■$£)       + ■ / 3P\    ■ 

^ \ ad*. +     ~   - ° 
(25d) 

We define now a derivative in which the shock front is stationary by the 

operator   J^    -X 

o 5F 
and apply this operator to the first of equations (26). 
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After transformation we obtain (Appendix VIII) 

(27)   -It-t u ^ -   A   i5 _ _a.   ^ 
l>-t      "3-R    p. 2>ia   ^TJ ^t 

where   q- a  Po U ±£.    = . _ Z. AU 

We note that all of the coefficients of equatior.3 (25c), (25d), and (27) 

may be expressed as functions of pressure alone by means of the Hugoniot 

conditions (26) and an appropriate equation of state of the fluid. If we 

dan find a fourth relation between the four partial derivatives, we would 

b« able to solve for each of the four derivatives as a function of P and 

R and to formulate by means of the operator we defined previously, an 

ordinary differential equation 

(28)    -^ •  £P + -i- £?- .  F(P,lO 

for the peak pressure P of the shock wave as a function of the distance 

R. (Henceforth we shall use u.' and P to denote particle velocity and 

excess pressure behind the shock front, and reserve the unprimed letters 

for these quantities at the shock front). 

The physical basis for establishing the desired fourth relation is the 

fact that as a shock wave passes through a fluid, it leaves in its path 

a residual internal energy increment in each element of the fluid. This 

energy increment is determined by an entropy change produced by passage of 

the shock front. As a result, the energy propagated by the shock wave 

decreases with distance from the source. 

Clearly, the work done by the shock wave after it passes a point R is 

ultimately transformed into internal energy. Consider the work vV. done 

by the source of initial radius a. , This work may be resolved into two 

part3r that which is transformed into internal energy of the fluid at 

29 a pressure p0    
7   within a sphere of radius R, and that work which is 

29 
Note that passage of a shock front through a fluid element leaves it 
at increased entropy and internal energy, from which it returns to the 
initial pressure p, . Absence of heat transfer is assumed throughout. 
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done on this spherical surface by the external fluid. 

The first part of this work, Wot > "jay he found by integrating Edm be- 

tween the initial and final spherical surfaces. The mass dm contained in 

a spherical shell of radius r0 , and thickness d/, , is dm = ATTfa **<, d^> 

p0 is used here because the fluid is initially in the undisturbed state. 

Hence, w 

W0( = (ta«( = 4TT ( e pe r?  dr. 
J
a> This integral may 

be evaluated if E = E ( P ), is known; "P being the peak pressure, and 

if  P = P ( fo  ) can be found. 

The second part of the work, V/ö3_ , may be found from the definition-of 

mechanical work, as the integral of normal force times distance. Here,. 

our force is pressure times area of a spherical surface, and 

■w> 
°° 30 

4TT f   r*(pVp0)«.'dL-t '02. 

Hence, 

(29) 

The term involving p„ in the time integral gives the product of p„ and 

the volume displacement of the fluid element initially at R. This dis- 

placement is obviously the sum of the outward volume displacement AV3 of 

the inner boundary of the fluid (i.e., the expansion of the explosion pro- 

ducts) and the displacement of the volume of fluid initially between shells 

of radii a„ and R to shells of radii CL' and R . We may hence write 

4TTJ ftr*u.'<*t - f0 cNt   +  4Kf«   [ ( r^Ar  - ( Cd+A 

Note that p-   P /   p%    ,  and  udt   is the displacement of a fluid element 

in tirre   dt    ;    t.(R)    is the time of arrival of the shock front at R. 
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or 

4irl   p.rlu.dt=  p. *V3   >   4TTp, (     {& - \) t.1- dr. 

from the relation    pr2dr = p„ r„2 dr„     between Euler and Lagrange 

coordinates as previously derived. 

If we now introduce'   h = E / p0 &{-k), the specific enthalpy incre- 

ment, we  find   • 

Substituting then,   (29) becomes 

(30)       Wo_ 

4TT 
dr0 

fo   ^v3 T'UL' <dlt 

The time integral is assumed to vanish as the shock front passes to 

infinite distance. Subtracting from (30) its value at R = °* , we 

obtain 

0= ( Wo0r^3ro   _ j ^por0^dr0   + (  >*-PVat 

from which 

= T>C«-) (3D    ( Wfl.^ J<i -     1  r^'a'^ 

The energy of the shock wave at the point R is by definition the work 

done on the fluid exterior to R.(oince total energy o'f shock wave is 

energy expended from source to R plus energy expended outside R, the 

energy remaining in the shock wave when it is at R is the total energy 

minus that expended between the source and R, or the energy expended 

outside R). The shock wave energy at R is hence given by 4TT £>(R.)» 

D(R) as written above does, however, depend on the size of the source, and 

it is hence desirable to normalize the tine integral to a value which is 

independent of this factor. This is done by expressing the integrand as 

a fraction of „its initial value R2Pu, and choosing a reduced time scale 
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for which the initial slope of the integrand has unit value. Inasmuch 

2  -"** as the observed energy-time curves are approximately of the form R Pue ' , 

it is convenient to use as a time unit the initial logarithmic slope of 

the curve, defined by 

After the differentiation is carried out, this becomes 

(32) 

A P Dt 
v  Du_ 
u. "it 

?.u, 

Then, D(R) may be expressed as 

(33)  I>C^ - -R^-P^A7J 

Where  O» = u  (-R.) =  (  y U,T) aT 

T = and 
A i^.TV - 

T being given by 

r^  P'u/ 

Elimination of ^tc between (32) and (33) yields the desired fourth re- 

lation between the partial derivatives at the shock front: 

(34) P 2>t 

Z.W- 

The set of equations (25c), (25d), (27), and (34)is exact, involving 

integrals of equations (25a) and (25b) for knowledge of the reduced 

energy-time function f(R,T). 

However, if f(a,^y) is initially a monotone decreasing function of T , 

f(R,T) will remain so, aad in fact will at larpe R become asymptoti- 

cally a quadratic function of T corresponding to the linear form of the 

pressure-time curve that has been shown to be stable at large distances^!» 

31 
J. G. Kirkwood and H. A. Bethe. 03RD 588(1942) 
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This means that V is a very slowly varying function of R, for which 

sufficiently accurate estimates for many purposes may be made without 

explicit integration of the hydrodynamic equations. The assignment of 

a value which is independent of R to V is equivalent to imposing a 

similarity restraint on the energy-tiine curve. This type of restraint 

has been used before, and has proven to b« a very reasonable assump- 

tion.26>32 

The initial energy-time and pressure-time curves of an explosion wave 

are rapidly decreasing. For an initial estimate of v , an expansion 

of the logarithm of the function in a Taylor series in time is appro- 

priate. (The well-known-peak-approximation). This corresponds to an 

exponential -}(.T) - «.-"r   , which gives the result i>  - fe""'r<* T = I 
o 

For the asymptotic quadratic energy-time curve,  -fr-lT) = ( > - ~y )l 

v  ' ft» ~ """/») ■^ AT    =■   k- 
As a convenient empirical 

interpolation formula between these two values, Kirkwood and Brinkley 

have used, in a different paper.^ 

-v I - - *P. 

in a aeries of calculations of the peak pressure distance curves for 

spherical shock waves. 

Equations (25c), (25d), (27), and (34) may be solved simultaneously for 

the four partial derivatives, and an ordinary differential equation for 

f* as a function of R may be formulated with the aid of equ. (28) . 

32 

33 

G. Taylor - Similarity solutions to problems involving gas flow and 

Shockwaves. Proc. Roy. Soc. A. 204, p 8-9, (November */.,  ly>0) 

J. G. Kirkwood and 5. R. Brinkley, Jr., OSRD 4814 (1945) 
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A second ordinary differential equation relating D to R may be obtained 

by differentiation of (31). 

The results of the above manipulations (as indicated in appendix X), may 

be written in the following form. 

dP 

(35)   a-R 
=  - ^ L ( F>) 

where 

•z(«f 9) - £, 

The functions L( P ),   M(P ), N( P ) can be evaluated as functions 

of the. pressure by means of the equation of state of the fluid and the 

Hugoniot relations (26).  (This is illustrated for the case of a perfect 

gas,in appendix XI). The equations (35) may then be integrated numerically. 

by the use of standard methods^ , provided the initial conditions are known. 

The constants of integration may be determined in one of two ways: 

(1) by the initial conditions at the boundary of the explosion pro- 

ducts following detonation, or 

(2) by an experimental pressure-time curve at a selected distance. 

The first method is a theoretical one, and is based on the thermo-chemistry 

connecting the explosive and its products. The study of detonation is a field 

34 

See, for instance, J. B. 5carbrough, "Numerical Mathematical Analysis." 

Johns Hopkins Press, Baltimore, Md., 1930, pp218 ff. 
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in itself, and is hence beyond the slope of this paper, ciome discussion 

of this may be found in R. H. Cole's book "Underwater Explosions", and 

Brinkley and Kirkwood have published a paper^giving tables and graphs 

for application of this type of boundary condition to numerical integration. 

According to Cole, the most convenient initial constants in this case are 

the initial pressure and either the parameter A  or the total shock-wave 

energy. 

If the semi-empirical approach is used, the natural constants of integra- 

tion to be chosen are the initial peak pressure and the energy integral. 

However, Cole mentions that it is difficult tc evaluate the energy inte- 

gral very accurately from experimental pressure-time curves. Hence, ex- 

perimental data of peak pressure as a function of distance are often used 

instead, for the determination of initial conditions from the equation for 

dP ar 

I have not worked out a numerical example here since the computational 

methods are well known-^, and since relatively little would be gained by 

such an example compared to the time required for computation. (Note the 

complexity of the equations derived in Appendix XI). 

35 
OSRD 1231 (1943). Calculation of detonation pressures for several 

types of explosives. 
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COMPARISON OF EXPERIMENTAL 'DATA ''«ITK VALUES  CALCULATED 

'BY THE THEORY OF KIRiC.V'OOD AMD 3RINKLEY 

-_ r-t° ,ae   overpreaaui-e   raoiu     " In Fig. 4. I have plotted the overpressure ratio TT= L~:   against 

reduced distance Z = TT>i%       •  The reason for this type of graph 

is based on the law of similarity'-^ , which asserts that pressure and 

other properties of a shock wave will be unchanged if the scales of 

length and time by which it ib measured are changed by the same factor 

as the dimensions of the charge. Since the weight of the charge is -a 

constant (density) times its volume, multiplying the weight by a factor 

1/3 
f amounts to multiplying each linear dimension of the charge by f 

Hence, the expression Z for reduced distance is constructed to make 

all properties as functions of Z independent of charge weight for a 

7      ' R 
given explosive.  For TOT, the density is such that it makes L-  l.Oo j, 

where . d is the diameter of a sphere having the same volume as the charge, 

and Z  is thus approximately the distance.from the explosive source in 

37 charge diameters . 

Fig. 4. shows a theoretical curve for explosion of TNT spheres, as com- 

puted by the method of Kiricwood and Brinkley by the originators of the 

method. Unfortunately, I was unable to find data which are exactly com- 

parable to the computed curve. 

j6 First stated by H. W. Hilliar, (British) department of Scientific 

Research and Experiment report RE 142/19 (1919) 

37    R. G. otoner and B. Bleakney.  "The Attenuation of spherical shock 

waves in air." J. Appl. Phys. 19,. 670 -678 (July, 1948) 
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Instead, the following data are shown plotted in Fig. 4. 

Charges Experimenters 

3 3/4 lb pentolite spheres Stoner and Bleakney^ 

Cylinders of TNT/CE, ranging Grime and Sheard38 

between 3 and 76 lb. 

The curve for the pentolite spheres is seen to approximate the theoretical 

curve for TNT spheres'very closely, and lies slightly above it throughout 

the plotted range. This discrepancy may be explained by the difference in 

£he explosives, pentolite having approximately a 5%  superiority in pressure 

level over TNT, according to the experimenters. 

The plot of data obtained for TNT/CE is seen to be similar in shape to the 

computed curve, but to lie a good deal above it. This difference may be 

explained by superiority of TNT/CE to ordinary TNT, and by the fact that 

the experimental charges were cylindrical (with diameter equal to height) 

whereas the computed curves applies to spherical charges. Further, the 

measurements were taken near the ground, which may result in some distortion 

of experimental results. 

As far as we may conclude from the above discussion, the theory of Brinkley 

and Kirkwood thus 3'eems to be in good agreement with experimentally obtained 

values. 

38 
G. Grime and H. Sheard. "The experimental study of blast from bombs 

and bare charges.» Proc. Roy. Soc. A 187, 357 (1946) 
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GLOSSARY OF HYDRODYNAMIC EQUATIONS 

Basic Approaches 

Hydrodynamic relations may be expressed in two different forms, one 

due to Lagrange-, the other due to Euler. 

1. Lagrange'3 form describes fluid motion in terms of the paths of 

individual particles, i.e. it expresses the coordinates x, y, z, 

of particles as functions of time and three other parameters 

(usually taken as the initial conditions). Lagrange's equations 

are usually too cumbersome, but are advantageous for describing one- 

dimensional motion. 

2. In Euler's form, an observer is considered at each point (x, y, z), 

and the happenings at these points are observed in the course of 

time t. The fluid motion is described by giving as functions of 

x> y» z» *■>  the velocity components u, y, w, of the particle that 

is at x, y, z, at time t. 

3. The relation between the two systems is expressed by the equations 

x s u ( x,«j, a,-0 

y  »v (x, y, i, k) 

2  * W (x, <j, TL,\) 

where the dot denotes differentiation with respect to t in the 

Lagrangian form. 

Conservation of Mass 

1. Lagrange's Form 

p^ » O   where    A ■» a-  "  *  i.e. the 

Jacobian of x(a, b, c, t), y(a, b, c, t), z(a, b, c, t); a,b,c, 

being the above mentioned parameters. 
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2. Euler'a Form 

This may be written more simply in vector form, 

5e. ^ p vv/ - o 
where the vector . v/ = a it + Vjj + w ^;  «, j , \k being 

unit vectors in the x, y, z,  directions, respectively. 

Conservation of Momentum 

1. I«agrange's. Form  ■ 

which may be written a3 

4^L + \. K? p'» o 
at       P     r 

where •    Vf'Ui+vjj-fwlV^   •       Another common way this is 

expressed is 

at 

Of — 
St 2   ■. 

2.    Euler's Form 

&(p*> - &^*) * £ (p-) - &(p*->- I5- ° 
ft<pv>* feCp-)^(fv^) t f£(rv) -|f = 0 

or, in vector form 

Conservation of Energy 

1. Lagrange's form 

where        EVoC    «   B. *  ± t St31 * <j* + ix) ,    E being internal 

energy per unit mass. 
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In vector notation, the above may be written as 

C  5^ L E * z. v'*3 * ^(r*)  =° 
This may be reduced to  ^>=D by using d£ = v2p dp / Tds, and 

the equations of conservation of mass and momentum, 

2. Buler's Form 

With V defined as above, and  VJ= aH«t*rt'-* Wl 

or 

-at. 

or, in vector form, 

ilpcf^] - fttH^)] * j!jHfM.)l * &HH -* 
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LIST OF SYMBOLS 

f 

g 

h 

i 

K 

1 

m 

P 

r 

3 

t 

V 

U, V, w 

x, y, z 

E 

G 

H 

F, J, U 

L, II, N 

P 

R 

T 

U 

W 

acceleration 

heat capacity at constant volume 

a function 

1 - P dU 
U  o»P 

enthalpy 

total impulse 

ratio of heat capacities, or constant 

thickness of shock front 

mass 

absolute pressure 

Euler Coordinate 

entropy 

time 

specific volume 

velocity components 

Cartesian coordinates 

internal energy 

a property, or 1 - (^~) 

enthalpy 

constants 

functions of P 

over pressure, p-p0 

Lagrange coordinate 

absolute temperature 

Shock wave velocity 

flow velocity behind wave front, or charge weight 

R/Wv* 
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* Heat transfer coefficient 

/*■■'' friction or viscosity coefficient 

k Thickness of fluid, disk 

p density 

o Sf>
dr 

• •  .1      . Reduced time, or a constant time 

Subscript (o) denotes initial conditions or properties of the undisturbed 

fluid. 
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